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A new approach called the Schrödinger Collective Intrinsic Model (SCIM) has been developed to
achieve a microscopic description of the coupling between collective and intrinsic excitations. The
derivation of the SCIM proceeds in two steps. The first step is based on a generalization of the sym-
metric moment expansion of the equations derived in the framework of the Generator Coordinate
Method (GCM), when both Hartree-Fock-Bogoliubov (HFB) states and two-quasi-particle excita-
tions are taken into account as basis states. The second step consists in reducing the generalized
Hill and Wheeler equation to a simpler form to extract a Schrödinger-like equation. The validity of
the approach is discussed by means of results obtained for the overlap kernel between HFB states
and two-quasi-particle excitations at different deformations.

I. INTRODUCTION

The Generator Coordinate Method (GCM) is a very useful approach to study large-amplitude collective modes. A
review on the GCM and quantized collective motion is given in reference [1]. It is widely used for the study of ground
state properties, and low-lying collective states in even-even nuclei. For instance, in Ref. [2] the Hill-Wheeler equation
is solved for the axial quadrupole collective coordinate, where the basis states are angular-momentum and particle-
number projected Hartree-Fock-Bogoliubov states using the Skyrme energy density functional. Improvements have
been made recently to generalize this study by taking into account the triaxial degree of freedom, with first results
reported for 24Mg [3]. State of the art configuration mixing calculations based on the GCM, including variation after
projection effects and projection of angular momentum and particle number for the effective interaction D1S have
also been performed by the Madrid group [4, 5]. In Ref. [4], shell closures have been studied in the N = 32, 34
mass regions and in [5] shape coexistence near neutron number N = 20 has been analyzed. When used with the
Gaussian Overlap Approximation (GOA) and employed with the full quadrupole coordinate the GCM leads to a five
dimensional collective Hamiltonian. This model has been extensively put to the test recently in Ref. [6, 7], where
predictions for yrast states up to 6+, and non-yrast 0+2 , 2+2 , 2+3 states have been compared with experimental data. A
time-dependent version of the GCM has also been used to study the fission process [8, 9]. In these latter works, the
collective dynamics is derived from a time-dependent quantum-mechanical formalism where the wave function of the
system is of GCM form, and for which a reduction of the GCM equation to a Schrödinger equation has been made
by means of the usual techniques based on the Gaussian overlap approximation.

In all the aforementioned works the adiabatic assumption has been made and no intrinsic excitations have been
taken into account. Collective vibrations have been considered to be completely decoupled from intrinsic excitations.
In the seventies, a few pioneering works were published, in which the usual GCM was extended to include 2 quasi-
particle (qp) excitations (GCM+QP) [10, 11]. In Ref. [11], the method was applied to A ≃ 50 nuclei, for which
excitation spectra display both collective and non collective features. In fact, calculations showed that vibrational
degrees of freedom may be important to describe the 2+ and 4+ states, while 6+ states may be dominated by 2-qp
components. In these calculations, the whole pf shell was used as a basis assuming 40Ca as an inert core, and a
modified version of the Kuo matrix elements was considered for the residual interaction. A GCM+QP approach is
well suited for the study of many phenomena, for which the coupling between collective and intrinsic states may play
a role: i) shape coexistence where K = 0 individual states could be coupled to low-lying vibrational collective states,
ii) backbending phenomena in rotational bands, iii) decay of superdeformed states to normally deformed states and
iv) non adiabatic effects during the fission process.

Where the fully microscopic treatment of the whole fission process from the initial stage of the fissioning system up
to scission is concerned, GCM based approaches are the best suited. They enable one to treat the fission dynamics as a
time-dependent evolution in a collective space. Adiabatic calculations have shown that the dynamics is very important
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for fission fragment distributions [9]: it is responsible for the large widths of the distributions. These results have
validated the adiabatic hypothesis made as a first approximation for the description of low-energy fission. In fact,
nuclear superfluidity induced by pairing correlations, in addition to strongly influencing the magnitude of the collective
inertia, is responsible for a strong rearrangement of the individual orbits with deformation. However, there are some
experimental indications that pairs are broken during the fission process. For instance, manifestations of proton pair
breaking are observed in 238U and 239U nuclei for an excitation energy of 2.3 MeV above the barrier: first the proton
odd-even effect observed in the fragment mass distributions decreases exponentially for an excitation energy slightly
higher than 2.3 MeV [12] and then the total kinetic energy drops suddenly [13, 14]. Some theoretical calculations
have studied the dissipation during the fission process, most of them are based on a semi-classical formalism such as
Focker-Plank equations [15–17], or Hamiltonian equations with one body dissipation and two-body viscosity [18, 19],
or Langevin equations [20, 21]. Here we aim at developing a microscopic non-adiabatic Schrödinger equation, in
order to obtain a microscopic description of the coupling between collective and intrinsic excitations. We use in the
following the abbreviation SCIM which stands for Schrödinger Collective Intrinsic Model. The newly developed SCIM
formalism is presented in Section II. In Section III, the calculation of the N-dimensional overlap kernel between 0 and
2qp HFB states is shown, and the dependence of its moments on the deformation is analyzed in details. Section IV
is then devoted to the derivation of the inverse of the overlap kernel. The Schrödinger equation is derived in Section
V and conclusions are drawn in Section VI.

II. DESCRIPTION OF THE FORMALISM USED TO CONSTRUCT THE SCIM

Our derivation of the SCIM proceeds in two steps as described in the two following paragraphs. The first step
is based on a straightforward generalization of the symmetric moment expansion of the equations derived in the
framework of the GCM [22]. We refer to the extensive review of the GCM given in [23], where most of the material
and references related to this subject are available. The second step consists in reducing the equation obtained in
section II A to a simpler form which will be the starting point to extract a Schrödinger-like equation.

A. Generalization of the Symmetric Moment Expansion

In order to take into account the coupling between collective and intrinsic degrees of freedom we use the ansatz

|Ψ〉 =
∫

dqf0(q)|Φ0(q)〉+
∑

i6=0

∫

dqfi(q)|Φi(q)〉. (1)

In the present study, Φ0(q) is the ground state at the q value of the collective variable and Φi(q), with i 6= 0, are
the associated 2-qp excitations whose precise definition and properties are given in section III A. Following the usual
procedure, the weight functions fi(q) are found by requiring that the total energy 〈Ψ|Ĥ|Ψ〉/〈Ψ|Ψ〉 calculated with
the function defined in Eq. (1) be stationary with respect to arbitrary variation δf∗

i , which leads to the well known
Hill-Wheeler equation

∑

j

∫

dq′
(

Hij(q, q
′)− ENij(q, q

′)
)

fj(q
′) = 0 (2)

where the Hamiltonian and overlap kernels are defined in terms of matrix elements such as

Hij(q, q
′) = 〈Φi(q

′)|Ĥ |Φj(q)〉,
Nij(q, q

′) = 〈Φi(q
′)|Φj(q)〉.

Eq. (2) could be the starting point to derive a local expansion by means of a Taylor expansion of the fi(q
′) around

q, as performed in reference [24]. However we prefer here the symmetric expansion [22] which, in our point of view,
provides a natural way to expand on the non-locality. Its derivation is very simple if we express the variational
principle after performing the change of the variables q̄ = (q + q′)/2 and s = q − q′ in the expression of the total
energy. We only give here the resulting Hill-Wheeler equation:

∫

dseisP/2
[

H(q̄ +
s

2
, q̄ − s

2
)− EN(q̄ +

s

2
, q̄ − s

2
)
]

eisP/2f(q̄) = 0 (3)
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with

P = i
∂

∂q
. (4)

Let us mention that in all the equations of this formalism, we set ~ = 1. At this stage it is important to mention that
Eq. (3) is obtained after performing successive integration by parts and consequently the form given here supposes
that the corresponding contributions of the integrated terms (surface terms) vanish at the boundary of the integration
domain. Note that this is the case in all applications of the GCM in spectroscopy studies [6, 7], as well as in nuclear
fission studies [8, 9]. In the following, we assume that we are in such a situation and pursue our derivation with Eq.
(3) as given above. Now, the series expansion of the exponentials is inserted in Eq. (3) and terms of the same order
in s are collected together. After integration with respect to s one is led to a symmetric moment expansion that
includes the coupling between collective and intrinsic variables. Following the notations in reference [23], except for
the imaginary number "i", the moments of any operator A is defined as:

A(n)(q̄) = in
∫ +∞

−∞
snA(q̄ +

s

2
, q̄ − s

2
) (5)

and symmetric ordered products of operators A(n)(q̄) and P as

[

A(n)(q̄)P
](n)

=
1

2n

∑

k

Ck
nP

n−kA(n)(q̄)P k. (6)

With the procedure described above and the notations just given, Eq. (3) is transformed into

∑

n

1

n!

(

[

H(n)(q̄)P
](n)−E

[

N (n)(q̄)P
](n)
)

f(q̄) = 0. (7)

Eq. (7) is the compact form of a set of coupled equations for the different components fi(q). Notice that the moments
occurring in its definition are square matrices whose dimension depends on the number of excitations introduced in the
description. It is worth pointing out here that another difference with the usual approach (no qp excitations) is that
all moments, odd or even, must be included in the summation. In order to give some more information about Eq. (7)
we refer to Section III where we elaborate on the properties of the selected GCM collective excitations in the present
work. There, it is shown that, with such a selection, the even moments and odd moments of Hermitian operators are
represented by real symmetric matrices and imaginary anti-symmetric matrices respectively. As a consequence the
operators in Eq. (7) are Hermitian. Finally, since the Hamiltonian is time-reversal invariant, it is easy to check that
this operator is also invariant if collective and intrinsic coordinates are time reversed as well. We will comment later
on the effect this result has on the Schrödinger equation we derive in Section V.

B. Reduction of the Symmetric Moment Expansion to a Schrödinger like equation

Eq. (7) is an infinite series which is an exact expansion of the Hill-Wheeler equations in terms of local operators.
It can be transformed into a local Schrödinger equation by inverting the expansion of the overlap kernel. The latter
can be written formally as

N̂(q̄) =
∑

n

1

n!

[

N (n)(q̄)P
](n)

=
(

N̂1/2(q̄)
)+

N̂1/2(q̄). (8)

In the following we use the definitions

N̂1/2(q̄) = Ĵ1/2(q̄)
√

N (0)(q̄)
(

N̂1/2(q̄)
)+

=
√

N (0)(q̄)
(

Ĵ1/2(q̄)
)+

, (9)

with

Ĵ(q̄) = I + û(q̄)

û(q̄) =
1

√

N (0)(q̄)

∑

n=1

1

n!

[

N (n)(q̄)P
] 1
√

N (0)(q̄)
. (10)
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These notations require further explanation. We use the property that any Hermitian operator A can be written in
the form A = S+S, with an operator S which is not necessarily Hermitian. Then, for the sake of simplicity, the
notation S = A1/2 is used although it is not strictly speaking the square root of A unless S+ = S.
We proceed further by defining a new set of collective wave functions, {gi(q̄)}, through the matrix relation,

f(q̄) = N̂−1/2(q̄)g(q̄) = (N (0)(q̄))−1/2Ĵ−1/2(q̄)g(q̄) (11)

to arrive finally from Eq. (7) at the local Schrödinger equation

(

(

Ĵ−1/2(q̄)
)+
[

∑

n

1

n!

1
√

N (0)(q̄)

[

H(n)(q̄)P
](n) 1

√

N (0)(q̄)

]

Ĵ−1/2(q̄)− E

)

g(q̄) = 0, (12)

where we have defined the operator

Ĵ−1/2(q̄) ≡ Ĵ−1/2(q̄). (13)

Eq. (12) is formally the same as the one given in [24] but differs from it in many respects. The definitions of
the moments and the operator û(q̄) are not at all the same. Furthermore, the operators occurring in its definition
are represented by matrices including, as already mentioned, those corresponding to odd moments. Notice that the
normalization

∫

dq̄
(

g(q̄)
)+

g(q̄) = 1 (14)

guarantees the normalization of the wave function defined in Eq. (1). In this approach, the main difficulty is to

determine the operator Ĵ−1/2(q̄), which, according to the definitions given in Eq. (10), is solution of the equation

(

Ĵ−1/2(q̄)
)+

(I + û(q̄))Ĵ−1/2(q̄) = I. (15)

In order to reduce its complexity, one is led to assume that the series expansion representing the overlap kernel
converges rapidly and can be truncated after the second-order moment. That is to say, we approach Eq. (15) by the
simpler one

(

Ĵ−1/2(q̄)
)+
[

I +
1

√

N (0)(q̄)
(
[

N (1)(q̄)P
](1)

+
1

2

[

N (2)(q̄)P
](2)

)
1

√

N (0)(q̄)

]

Ĵ−1/2(q̄) = I. (16)

In section IV we study Eq. (16) in some detail and explain how it can be solved with parametrizations of the form

Ĵ−1/2(q̄) =

4
∑

n=0

[

j(n)(q̄)P
](n)

. (17)

The quantities j(n)(q̄) are unknown matrices which are determined by solving Eq. (16).

Once the inverse Ĵ−1/2(q̄) is known it can be inserted in Eq. (12), and by means of the formulas given in the
Appendix A, there is no difficulty in finding a general expansion in terms of symmetric ordered products of operators.
In other words one can express Eq. (12) in the form

∑

n

(
[

S(n)(q̄)P
](n) − E)g(q̄) = 0. (18)

Then a second order differential Schrödinger equation is derived by limiting the summation to n = 2. However, for
obvious practical reasons, one does not extract the S(n)(q̄) with the full expansion of the Hamiltonian kernel but with
a truncation similar to the one introduced in the case of the overlap kernel. Thus, in all that follows, our derivation
of a Schrödinger equation relies on the approximated expression

(

( Ĵ−1/2(q̄))
+ 1
√

N (0)(q̄)
(H(0)(q̄) +

[

H(1)(q̄)P
](1)

+
1

2

[

H(2)(q̄)P
](2)

)
1

√

N (0)(q̄)
Ĵ−1/2(q̄)− E

)

g(q̄) = 0, (19)
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with Ĵ−1/2(q̄) satisfying Eq. (16).
Such an approach assumes that the series expansions of the overlap and Hamiltonian kernels converge rapidly. If the

moments were independent of q̄ or if we could neglect their variations, Eq. (7) would simply be a power expansion in
the collective momentum P . Then one could conclude naturally that this approach is limited to the study of collective
motions with momenta that are not too large, or equivalently at moderate energies. Notice, that if we approximate

the kernels with a Gaussian [23] of width σ(q̄) the expansion (Eq. (7)) becomes a series with terms [σn(q̄)P
](n)

. In
that form it appears that a rapid convergence of Eq. (7) requires that the collective wave functions, as well as the
moments, are slowly varying functions in a range given by the width of the Gaussian. These arguments are only
qualitative in the sense that they do not give precise information regarding the energies up to which one can expect
the approximation to be reasonable. In relation to this discussion we refer to the work by Bonche et al. [25] which
contains a detailed comparison between two calculations of large amplitude quadrupole dynamics in 194Hg. One is
based on a direct resolution of the Hill-Wheeler equation (HWE) as extracted with the GCM, while the other uses a
collective Schrödinger equation (CSE) resulting from a local expansion of the HWE into a second order differential
equation. Although their approach to the CSE approximation is not rigorously identical to the one described here,
we think that one can extract general deductions from their work. We will only quote some of their conclusions
here. The GCM and the CSE reproduced the energies of most collective states fairly well. However one observes
significant differences in the collective wave functions at excitation energies around 6 MeV and above. More precisely
the corresponding HWE collective wave functions display more and more irregular structures and rapid variations
that a CSE approach is not able to reproduce. We do not deny the fact that it is important to have a fair description
of the collective wave functions, but we do make the observation that for excitations above 4 or 5 MeV one also has
to worry about their possible coupling with qp excitations, which is the main motivation of this work.

At this stage one needs some more information on the kernel overlap to proceed further in the reduction of the
equations given above. It is the purpose of the next section to present a numerical study of this kernel in a wide range
of deformations that would be encountered in a microscopic description of the symmetric fission of 236U.

III. THE N-DIMENSIONAL OVERLAP KERNEL

A. Selection of the 2-qp generating wave function

In this paragraph, a set of generating wave functions is constructed by means of the constrained Hartree-Fock-
Bogoliubov method as described in [8, 9]. We limit this study to the case of one generator coordinate q associated to
the total quadrupole deformation of the even-even nucleus 236U. Furthermore, the calculations are restricted to axial
symmetry. As a consequence the qp are characterized by their projection K of the total angular momentum on the
symmetry axis. We denote the ground state (or Bogoliubov vacuum) at deformation q by |Φ0(q)〉 and recall here its

definition in terms of the qp destruction operators ηi(q) and their time reversal conjugate ηī(q) = T̂+ηi(q)T̂ , where T̂
is the time reversal operator:

|Φ0(q)〉 =
∏

i>0

ηi(q)ηī(q)|0〉. (20)

Furthermore we restrict our calculations by introducing another symmetry which is associated with the invariance
of the Bogoliubov fields when performing a reflexion with respect to the x0z plane. In that case the parity π is an
additional quantum number and the qp operators are then characterized by k ≡ {nk, πk,Kk} where nk is an index
which distinguishes single qp states inside the same block {πk,Kk}. At each deformation we can then define a set of
2-qp excitations

η+i1(q)η
+
i2
(q)|Φ0(q)〉. (21)

This study is limited to the description of the coupling of the ground state with 2-qp excitations. Consequently,
since the Hill-Wheeler equation conserves the total projection of the angular momentum on the symmetry axis (z)
and since the ground state is a state K = 0, it is clear that the quantum number of 2-qp excited states must satisfy
Ki1 + Ki2 = 0. In addition, by using similar arguments with the time reversal transformation, we arrive at the
conclusion that the qp excitations must be symmetric under time reversal. Thus the N selected configurations at
deformation q are written in the form:











|Φ0(q)〉
|Φi(q)〉 = 1√

2
[1 + δi1i2(

1√
2
− 1)]

(

η+i1 (q)η
+
ī2
(q)

+η+i2(q)η
+
ī1
(q)
)

|Φ0(q)〉, i = 1, N − 1.

(22)
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Notice that for the 2-qp states, the index i denotes the couple (i1, i2). For simplicity of notation we have not added
another index to indicate whether the excited configurations are built with two neutrons or two protons qp. Finally,
for sake of convenience and since the 2-qps i1, i2 are in the same block {πi,Ki} ≡ {πi1(2) ,Ki1(2)}, we also use in

the following the notation i = {Kπi

i , (ai)} where the letter ai which distinguishes the couple (ni1 , ni2) in the same
block {πi,Ki} is used if necessary. These wave functions which are not eigenfunctions of the proton and neutron

number operators N̂p, N̂n should in principle be projected on the subspace of states with good particle numbers. The
expression of the overlap kernel is readily expressed with the usual techniques to calculate the overlap between two
Bogoliubov vacuum [26]. The difficulty in projecting is essentially numerical since the projection method requires
repeating the calculation of the overlap at different angles in order to calculate an integral with a discretization method
[27]. Such calculation, if feasible in the study proposed here, would represent a considerable amount of computational
work and numerical studies. At this stage it is worth pointing out that a description of the fission process from the
first barrier to scission involves a wide range of deformations typically in the interval [50 b, 550 b]. Furthermore, an
accurate calculation of the potential energy surface, in particular close to the scission point, necessitates the use of a
very large dimensional space of harmonic oscillator basis states. As an example, we indicate that in a one-center basis
the size of the K = 1/2 block is [150 × 150]. In view of these remarks, we find some justification in presenting this
formalism with unprojected wave functions. We stress that until now our formalism does not depend on the particular
model used to calculate the kernels. Finally, let us conclude this section with a different issue which is still related to
this question of particle number. It concerns the restoration of the correct average values of the number of protons
and neutrons of the Hill-Wheeler solutions. This problem is studied in details in reference [25] where the authors

introduce in the Hill-Wheeler equation the kernels calculated with the two operators N̂p, N̂n and their associated
Lagrange parameters. The implementation of this method in our formalism is straightforward.

B. Calculation of the overlap kernel

1. Generality

Calculations presented in this paper correspond to different excitations along the symmetric fission barrier in 236U.
The HFB equations are solved by expanding the single-particle states onto an axial harmonic oscillator (HO) basis.
A one-center basis with N = 14 major shells has been used. The calculations are performed with the Hartree-Fock
+ BCS method and a constraint on the quadrupole operator. They have been restricted to axial and left-right
symmetries. The full Bogoliubov approach has not been considered here for reasons of computational time only.
Because of the symmetries imposed in this calculation, the Bogoliubov or (HF+BCS) transformation can be chosen
to be real. As a result all quantities occurring in the formalism are real. This is the case in particular of the overlap
matrix which is denoted by

Nij(q, q
′) = 〈Φi(q)|Φj(q

′)〉. (23)

Calculations of this matrix have been performed at different elongations along the symmetric barrier. The formalism
used to extract these matrix elements is given in detail in Appendix B. In all what follows the results are presented
in the variables q̄ and s defined in the first paragraph of Section II. More precisely at each q̄ given in barns, we
plot the matrix elements Nij(q̄ + s/2, q − s/2) as function of s running in intervals wide enough that the overlaps
Nij(q̄+s/2, q−s/2) drop to zero. The {q̄} have been chosen in the range [20 b, 350 b] with a step of 10 b up to q̄ = 100 b
and a step of 25 b beyond. Let us mention that deformations close to 160 b, namely q̄ = 150 b and q̄ = 175 b, are not
discussed here, since they correspond to a junction between two valleys having different hexadecapole deformations.
Such a study requires to treat explicitly the hexadecapole degree of freedom [28, 29].

The symmetric barrier is plotted in Fig. 1. The ground state is located near 30 b, the first barrier at 50 b, the
second well at 80 b and the second saddle point at 160 b.

The intrinsic levels chosen to construct the 2-qp excitations are the lowest-energy proton Kπ =
1/2−, 1/2+, 3/2−, 3/2+, ... qp levels. Among them, the selected intrinsic excitations are those which minimize the
deviation from the average proton and neutron numbers. Results are presented in the present work only for proton
excitations and similar results and conclusions are expected for neutron excitations.

Some comments are in order concerning phase problems that we encountered in the construction of these 2-qp
excitations. In fact the qp states or operators ηi which result from the diagonalization of the Bogoliubov Hamiltonian
are defined up to an arbitrary phase which in the present case is real, i.e. ±1. The phases of two conjugate qps
ηī, ηi are then the same by construction and consequently the Bogoliubov vacuum defined above does not depend
on these phases. The same conclusion applies to the case of two conjugate qp excitations |Φi(q)〉 = η+i1η

+
ī1
|Φ(q)〉

but it is not the case for all other 2qp excitations. It is worth stressing that if we were using the qp as they come
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Figure 1: HFB potential energy along the symmetric fission barrier in 236U.

out of the diagonalization of the Bogoliubov Hamiltonian, the corresponding non-diagonal matrix elements of the
kernels can become discontinuous at random as function of the deformation, which would prevent the extension of
the GCM with those excitations. In order to solve this problem, the single-qp excitations used in the construction of
the 2-qp excitations have been followed continuously as a function of deformation. This is achieved with the following
simple procedure. Any single-qp state |i, q + δq〉 at deformation q + δq is associated with |i, q〉 by maximizing the
single-particle overlap |〈i, q|k, q + δq〉| among all k in the 1-qp spectrum at deformation q + δq. This overlap is
nothing but the anti-commutator {η+i (q), ηk(q+ δq)}. Denoting by k the qp which achieves this maximization, we set
|i, q + δq〉 ≡ ϕi(q)|k, q + δq〉 where a phase given by

ϕi(q) =
〈i, q|k, q + δq〉
|〈i, q|k, q + δq〉| (24)

has been introduced. It is clear that with such procedure the matrix elements of the overlap kernel become continuous
functions of the deformation. Let us mention that the problem of the sign of the overlap has been recently addressed
by L. Robledo in [31] for general HFB wave functions that do not have any spatial symmetry (triaxial) and also
breaking of the time reversal symmetry.

The evolution of the energy of 2-qp excitations is plotted in Fig. 2 as a function of the deformation around q̄ = 70 b.
It shows that the lowest excitation is located around 3 MeV. No significant difference is observed between proton and
neutron excitations.

Let us mention that we need not limit ourselves to excitations that conserve the average number of particles, but as
a result the number of excitations increases rapidly when we allow the mean particle numbers N̄i and Z̄i to vary by 1
particle around their average value. For instance for an energy below only 5 MeV and with a mean particle number
in the range 92 − 1 ≤ Z̄i ≤ 92 + 1, 144 − 1 ≤ N̄i ≤ 144 + 1, we already find 6.5 proton 2-qp excitations and 11.5
neutrons per deformation.

As we follow the single-qp states by continuity as a function of deformation, levels with the same K and π quantum
numbers can occasionally cross or be pushed back from each other. Such features are common and can occur anywhere
along the deformation. Such cases are illustrated in Fig. 3 around q = 30 b for Kπ = 1/2+. The figure shows that
a repulsion occurs between the two first levels at a deformation qr = 29.5 b, defined as the deformation where the
difference in energy between the 2 levels is minimal, whereas crossings are observed at q = 34 b and q = 40 b. Note
that, unlike crossings, repulsions correspond to a mixing of the two incoming levels.

C. Numerical results for the matrices Nij(q̄ + s/2, q̄ − s/2) of the overlap kernel

As already mentioned in [25], an accurate calculation of the complex behavior of the overlap kernel requires a careful
determination of the HFB states. The overlap kernels are the determinants of the matrices built from the overlaps of
all pairs of individual orbits: they are very sensitive to the details of those orbits. For this reason one must achieve
a very accurate convergence of the HFB wave functions if one wants to get reliable values of the overlap kernels. As
a consequence, all the HFB states here have been obtained with a very high degree of accuracy. More precisely, a
convergence of 10−6 fm−3 has been achieved on the generalized density matrix. Let us note that the parameters of
the Harmonic Oscillators used to develop the HFB states have been optimized in each region at the deformation q̄
(i.e. q = q′), and kept constant for the neighboring deformations. For reference we have thought it interesting to
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Figure 2: Energy of the selected 2-qp excitations around q = 70 b, as a function of deformation. Letters are used to
differentiate excitations with same Kπ.
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Figure 3: Energy of the single-qp excitations around q = 30 b for Kπ = 1/2+.

show the plot of these matrices as function of s for different values of q̄ even though the quantities which count in
this formalism are their moments. The latter are presented in section III C 3.

1. Calculation of the diagonal matrices Nii(q̄ + s/2, q̄ − s/2)

In Fig. 4 the overlaps N00(q̄+s/2, q̄−s/2) between HFB solutions at different deformations are plotted as functions
of s for different values of q̄.

At first glance, all the overlaps shown in Fig. 4 suggest that they are close to a Gaussian shape, independently of
the mean quadrupole deformation q̄. Although the SCIM formalism derived in this paper does not require that the
overlaps be Gaussian, it is instructive to check the validity of this assumption, as a further motivation for the more
general moment-based approach we use. The width of the overlap is found to strongly depend on the deformation.
In general, the width increases with the deformation, with local minima all along the barrier. The extent to which
the Gaussian shape is a good approximation can be investigated by comparing different ways to associate a width to
these overlaps. In fact, assuming that they can be represented by a Gaussian

I(q, q′) = e−(q−q′)2/2σ2

, (25)

their moments of even order should verify the relations

N (0)(q̄) =
√
2πσ(q̄)

N (2n)(q̄) = (−1)n
(2n)!

2nn!
σ2n(q̄)N (0)(q̄) (26)
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Figure 4: (color online): Comparison between the overlaps N00(q̄ + s/2, q̄ − s/2) calculated for different q̄ as
functions of s for 20 b ≤ q̄ ≤ 100 b (left panel) and 100 b ≤ q̄ ≤ 350 b (right panel).

which provide different ways to extract the width σ(q̄). The same procedure can be applied a priori to all the diagonal
terms of N(q̄ + s/2, q̄ − s/2). In Fig. 5 (left panel) a few diagonal elements of the overlap matrix are plotted at
q̄ = 50 b where a comparison is made between overlaps of HFB vacuum and 2 qp states. The different overlaps are
very close together, but we notice some difference in the tails. As we will see latter, these small deviations in the
tails have a significant influence on the value of the second-order moments. Furthermore, we find that level crossings

do not generate any sizable change in N
(n)
ii (q̄), whereas repulsions are responsible for a quite rapid but continuous

change in the overlap. Three different cases are plotted in Fig. 5 (right panel). First, we observe that the overlap
(plotted as dashed line) of the excitation built with two Kπ

i = 3/2+ qp, one of them being involved in a repulsion
at qr = 57 b, is not sizably disturbed by the repulsion. Conversely, for the same configuration – one single excitation
involved in a repulsion at qr = 57 b – the overlap built with Kπ

i = 1/2+ qp is sharper (smaller width) than the
previous one. The most pathological case is found for the overlap built this time with two 5/2+ excitations involved
in a mutual repulsion at qr = 47.5 b, close to q̄ = 50 b. This overlap even becomes negative in the region close to the
level repulsion. The comparison with a Gaussian overlap is therefore clearly unjustified here. Let us note that these
numerical results are in agreement with the analysis of the repulsions we made in Section III B 1.
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Figure 5: (color online): (Left panel) Overlap kernel Nii(q̄ + s/2, q̄ − s/2) for HFB solutions and different 2-qp
excitations not involved in repulsions (labeled by Kπ(i)) at q̄ = 60 b, plotted as functions of s. (Right panel)

Overlap kernel Nii(q̄ + s/2, q̄ − s/2) for HFB solutions and different 2-qp excitations involved in repulsions (labeled
by Kπ(i), and qr the deformation where the repulsion occurs) at q̄ = 50 b, plotted as functions of s. Letters are used

to differentiate same Kπ excitations in both figures.

The widths, obtained from Eq. (26) using the moments of zero, second and fourth orders are plotted in Fig. 6 as
functions of the deformation for the overlaps N00(q̄ + s/2, q̄ − s/2) and Nii(q̄ + s/2, q̄ − s/2).

Particular attention has been paid to the widths extracted from the N
(n)
00 (q) overlaps: calculations of the widths

have been performed in the range [20 b, 110 b] with a step of 0.5 b. On the right panel of Fig. 6 we observe that
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Figure 6: (color online) Widths of the overlap extracted from the moments of zero, second and fourth orders, as
functions of the elongation, in black circle, red cross and blue triangle, respectively. Full lines correspond to the

widths from N
(n)
00 terms and circles to diagonal terms N

(n)
ii , i 6= 0. Left panel: Results for a large range of

deformation [0, 350 b]. Right panel: Widths from N
(n)
00 in the region [0, 110 b].

the three widths for N
(n)
00 (q) do not differ too much in most cases, which corroborates the fact that the overlaps are

reasonably close to those from a Gaussian shape. For the lowest deformations, the largest differences occur when the
width is minimum, at 46 b, 72 b and 102 b with a maximal deviation of 22% at 72 b, between the widths extracted
from the moments of zero and fourth orders.

Widths of the overlaps Nii(q̄), with i 6= 0 are also plotted up to 350 b on the left panel of Fig. 6. Since the
excitations involved in repulsions do not lead to Gaussian shapes, as illustrated in Fig. 5b), they are not taken into
account in this analysis. The maximal deviation between the widths obtained from N (0)(q̄), N (2)(q̄) and N (4)(q̄) for
a given excitation is found to be about 19%. The average of this maximal deviation over all the different excitations
and over all the deformations is about 5%. However, we emphasize that these deviations will pose no problem in our
approach since we do not rely on a Gaussian-overlap assumption at all.

2. Calculation of the non-diagonal terms Nij(q̄ + s/2, q̄ − s/2)

Non diagonal overlaps Nij(q̄ + s/2, q̄− s/2) (i 6= j) are plotted in Fig. 7. N0i(q̄ + s/2, q̄− s/2) are displayed in the
left panel, and Nij(q̄ + s/2, q̄ − s/2) in the right panel. For the sake of visibility, only a few overlaps are drawn.
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Figure 7: (Color online) Overlaps N0i(q̄+ s/2, q̄− s/2) (left panel) and Nij(q̄+ s/2, q̄− s/2) (right panel) at q̄ = 30b,
for different excitations labeled by Kπ as a function of s. Letters are used to differentiate same Kπ excitations.

At this point let us emphasize that non-diagonal overlaps have no a-priori reason to be even or odd functions of s.
However, they must be zero for s = 0, since, at the same deformation, 2-qp excitations are orthogonal to the ground
state and any other 2-qp excitation. We observe on this plot that in fact they are odd or even functions of s near
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the origin, depending on the indices i,j of the excitations. Notice that the amplitudes of these non-diagonal overlaps
are much smaller than the diagonal ones. Furthermore, the overlaps between two excited states are also small in
comparison to those between the ground state and excited states. The exceptions are found for qp states having the
same quantum numbers Kπ(i) = Kπ(j), as shown by the blue curve with open circles in Fig. 7b). This result is not
surprising since, using the generalized Wick theorem when Kπ(i) 6= Kπ(j), the following relation is found:

Nij(q̄ + s/2, q̄ − s/2) =
1

N00(q̄ + s/2, q̄ − s/2)

×N0i(q̄ − s/2, q̄ + s/2)N0j(q̄ + s/2, q̄ − s/2). (27)

We also mention here that the overlap matrix is not block-diagonal in isospin, since

N τiτj
ij (q, q′) = 〈Φ(q)|ητii2 η

τi
i1
η
τj+
j1

η
τj+
j2

|Φ(q′)〉

is non zero for τi 6= τj .

Conclusions obtained for the diagonal terms of N (0)(q̄) about repulsions and crossings still apply here: non-diagonal
overlaps are not disturbed by crossing levels but can vary rapidly when a repulsion occurs. In Fig. 8 the overlap
Nij for a couple of 2-qp excitations i = (i1, i2) and j = (j1, j2) with Kπ

i(j) = 1/2− is depicted. In this case, i1 and

i2 are both involved in a mutual repulsion at qr = 218 b and i2 = j2. The amplitude of this overlap is much larger
than that of the standard (without repulsion) non diagonal overlap. Let us mention that this kind of configuration is
encountered several times along the deformation and corroborates our observation in Section III A that the qp states
i1 and j1 are mixed in the repulsion area.

-40 -20 0 20 40
s (b)

-0.2

-0.1

0

0.1

0.2

Figure 8: Non diagonal term Nij(q̄) built with excitations involved in a repulsion at qr = 218 b.

3. Numerical study of the Moments N
(n)
ij (q̄), n = 0, 1, 2

According to our approximation (see Eq.(16)), the overlap kernel has to be analyzed through its moments up to
the second order. At this point it is useful to introduce some important properties of the moments defined in Section
II A. Their demonstration being straightforward we only list them here:
- All moments of a Hermitian operator are Hermitian:

Â+ = Â ⇒ A(p)+ = A(p).

By applying this property to the overlap kernel, whose matrix elements are real for reasons given at the beginning of
this section, the matrices associated with even-order moments are found to be real symmetric while those associated
with odd-order moments are imaginary antisymmetric.
- Finally, let us indicate that the even moments of an operator have the same parity with respect to the time reversal
symmetry (T̂ ) as the operator considered, while the opposite is true for odd moments

T̂+ÂT̂ = ǫÂ ⇒ T̂+A(p)T̂ = (−1)pǫA(p),
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Kπ 0 5/2−(a) 5/2−(b) 1/2− 1/2+(a) 1/2+(b)
3/2+(a)
qr = 57b

3/2+(b)
qr = 57b

5/2+

0 13
5/2−(a) 2.1 × 10−2 13
5/2−(b) −1.7× 10−2

−6.0× 10−3 13
1/2− −1.2× 10−2 4.3× 10−3 5.4× 10−3 13
1/2+(a) 6.8 × 10−2

−2.1× 10−3
−3.3× 10−3 3.5× 10−3 12

1/2+(b) −7.4× 10−2 8.1× 10−3 1.1× 10−2
−1.3× 10−2

−2.2× 10−3 12
3/2+(a), qr = 57b −4.5× 10−2 6.3× 10−3 8.4× 10−3

−1.0× 10−2 4.5× 10−3
−2.0× 10−2 12

3/2+(b), qr = 57b −1.3× 10−1
−3.1× 10−3

−2.6× 10−3 4.2× 10−3
−4.0× 10−3 9.2 × 10−3 5.2× 10−3 12

5/2+ 8.9 × 10−3 5.4× 10−3 6.6× 10−3
−8.3× 10−3 4.6× 10−3

−1.7× 10−2
−1.3× 10−2 4.5× 10−3 13

Table I: Matrix elements of N (0)(q̄) at q̄ = 60 b. Centers of repulsion qr are mentioned if needed. Letters are used to
differentiate same Kπ excitations.

where ǫ = ±1.
With these properties established, we can now analyze numerical calculations of each of the three moments N

(n)
ij (q̄)

for n = 0, 1, 2 .
a. The Zero order moment matrix N (0)(q̄) This matrix plays an essential role in the formalism as observed in Eqs.

(16) and (19). In fact it is the inverse of its square root which occurs in these expressions and whose determination
requires in principle the diagonalization of N (0)(q̄) with a matrix U(q̄) which depends itself on the deformation q̄.
As a consequence, the transformation of the symmetric operators in Eqs.(16) and (19) to the new representation
necessitates the calculation of the first and second derivatives of U(q̄) thereby including a number of terms which
significantly increase the size of the expressions (16) and (19). In light of the numerical calculations presented above,
we propose instead a set of reasonable approximations to avoid these unnecessary complications.

First, in Fig. 9, the moment N
(0)
00 (q̄), as well as its first and second derivatives, all of which intervene in various

quantities, are shown at different deformations.
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Figure 9: (left panel) N
(0)
00 (q̄) and its first and second derivatives (right panel) as functions of the deformation.

The moment generally increases between 8 b and 37 b as a function of the quadrupole deformation. Its first two

derivatives N
(0)′

00 (q̄) and N
(0)′′

00 (q̄) are found to be much smaller by at least one order of magnitude. Their values vary

rapidly in the interval [−0.9, 0.5] for N
(0)′

00 (q̄) and [−0.4 b−1, 0.6 b−1] for N
(0)′′

00 (q̄).

In Table I we give the matrix elements of N (0)(q̄) for different excitations at q̄ = 60 b. At this deformation, we
observe that the diagonal elements do not depend too much on the 0 or 2 qp states under consideration: they are
found to be between 12.0 b to 13.4 b. Such a feature is also observed for most of the deformations. However, let us
mention that in a few cases, repulsions between single-particle states induce larger variations of the diagonal elements

N
(0)
ii (q̄). This observation suggests we should introduce the diagonal terms N

(0)
AV (q̄) defined as

N
(0)
AV (q̄) =

1

N
Tr(N (0)(q̄))

with N the dimension of the matrix N (0)(q̄). With such a definition, the matrix N (0)(q̄) can then be written in the
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Kπ 0 5/2−(a) 5/2−(b) 1/2− 1/2+(a) 1/2+(b)
3/2+(a)
qr = 57b

3/2+(b)
qr = 57b

5/2+

0 0.0
5/2−(a) −7.9× 10−2 0.0
5/2−(b) −9.8× 10−2

−9.9× 10−1 0.0
1/2− 1.2 × 10−1 3.7× 10−4

−8.1× 10−4 0.0
1/2+(a) −6.9× 10−2 1.1× 10−3 2.0× 10−3

−1.8× 10−3 0.0
1/2+(b) 2.5 × 10−1

−5.9× 10−4
−2.5× 10−3 1.5× 10−3 7.3× 10−2 0.0

3/2+(a), qr = 57b 1.9 × 10−1
−3.1× 10−4

−1.9× 10−3
−1.2× 10−3

−1.8× 10−3 4.0 × 10−4 0.0
3/2+(b), qr = 57b −7.3× 10−2

−2.6× 10−3
−2.2× 10−3

−3.7× 10−3 3.7× 10−3
−7.6× 10−3 2.5 × 10+0 0.0

5/2+ 1.5 × 10−1
−8.4× 10−4

−4.5× 10−4 6.1× 10−4
−2.5× 10−3 2.8 × 10−3 2.0× 10−3 3.6× 10−3 0.0

Table II: Matrix elements of normalized first-order moment N̄ (1)(q̄) for different excitations at q̄ = 60 b. All the
values are divided by i in order to be real. Centers of repulsion qr are mentioned if needed. Letters are used to

differentiate same-Kπ excitations.

form

N (0)(q̄) = N
(0)
AV (q̄)[I +∆(q̄)], ∆(q̄) =

N (0)(q̄)−N
(0)
AV (q̄)I

N
(0)
AV (q̄)

The diagonal and off-diagonal matrix elements of ∆ are all found to be small for all deformations , and therefore the
inverse of N (0)(q̄) can be calculated by means of the series expansion of (I +∆(q))−1/2. As a result of this study, it
appears that considering this inverse square root as diagonal is a reasonable approximation.

At this point, we introduce normalized moments for non zero order moments of the overlap kernel since they are
the quantities of interest in the formalism developed in sections IV and V,

N̄ (p)(q̄) =
1

√

N (0)(q̄)
N (p)(q̄)

1
√

N (0)(q̄)
, p ≥ 1. (28)

Taking advantage of our previous discussion, these moments are calculated in the approximation that the inverse
square root of N (0)(q̄) is diagonal. Their properties are discussed in the next paragraph.

b. First order matrix moment N̄ (1)(q̄) The matrix elements of normalized first order moment N̄ (1)(q̄) are given
in Table II for different excitations at q̄ = 60b. Since N̄ (1)(q̄) is antisymmetric, the diagonal terms are zero. From Eq.

(28), it is clear that the value of N̄
(1)
ij (q̄) depends on the amplitude of the overlap N

(1)
ij (q̄). As shown in Table II, the

absolute value of N̄
(1)
ij (q̄) is generally small although some specific excitations associated with level repulsions lead to

non negligible values.
Over the whole range of deformation, the most singular case concerns two excitations involved in a mutual repulsion

for which |N (1)
ij (q̄)| = 6.9 b. All along the deformation, only 27 matrix elements |N (1)

ij (q̄)| (out of 612) are higher than
1 b.

c. Second order moment N̄ (2)(q̄) As we will see in Section (IV), the derivation of the inverse of Ĵ1/2(q̄) =

(I+û(q̄))1/2 requires the determination of not only the second-order moments, but also its first and second derivatives.
For the sake of brevity, we only display in Fig. 10a) and 10b) those quantities in the case of the diagonal element

in the ground state.
In Fig. 10a) we notice that all these quantities, not only vary rapidly with the deformation but they also undergo

oscillations of very large amplitude. The moment itself varies in between −5 b2 and −211 b2 in a range of deformations
[20 b, 350 b]. As for the first and second derivatives they are contained in the range [−3 b, 6 b] and [−2.1, 1] respectively
(Fig. 10b)).

In Table III, diagonal and non-diagonal normalized second-order moments are given for the HFB minimum and
the selected excitations at q̄ = 80 b. Diagonal terms are negative due to our definition of the second-order moment.
As expected from our discussion on non-diagonal matrix element of the overlap, most of the non-diagonal terms are
at least two orders of magnitude smaller than the diagonal ones. It is also seen that they strongly depend on the
excitations. Very similar features are observed for all deformations up to q̄ = 350 b. However, the maximum value of

a non-diagonal term is found to be sup
i6=j,q̄

|N̄ (2)
ij (q̄)| = 78.4 b2 at q̄ = 250 b, which corresponds to 44% of N̄

(2)
00 (q̄) in this

region. This case corresponds to i = (i1, i2) and j = (j1, j2) excitations for which repulsion occurs between i1 and j1
at qr = 242 b and between i2 and j2 at qr = 265 b.
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Figure 10: (Color online) The normalized second order moment N̄ (2)(q̄) (left panel) and its first (black filled circles)
and second (red filled triangles) derivatives (right panel) of the non excited overlap along the deformation.

Kπ 0 3/2−(a)
3/2−(b)

qr = 82.5b
1/2−

1/2+(a)
qr = 85b

1/2+(b)
qr = 85b

1/2+(c)
qr = 85b
q′r = 86b

5/2+ 9/2+

0 -39
3/2−(a) 1.1× 10+0

−26
3/2−(b) −1.9× 10−1 1.2× 10+0

−30
1/2− 2.4× 10−2 4.3 × 10−1 3.2× 10−2

−39
1/2+(a), qr = 85b −3.7× 10−1 1.1 × 10−1 2.7× 10−3 6.3× 10−3

−32
1/2+(b), qr = 85b −8.7× 10−2

−2.7× 10−1
−2.1× 10−2

−1.9× 10−2
−2.2× 10−2

−32

1/2+(c),
qr = 85b
q′r = 86b

1.1× 10−1
−2.4× 10−1

−1.6× 10−2
−1.9× 10−2 2.4× 100 2.3× 10−1

−29

5/2+ 2.3× 10−1 8.6 × 10−1 6.6× 10−2 7.1× 10−2 1.5× 10−2
−4.5× 10−2

−3.8× 10−2
−39

9/2+ 2.3× 10−1 2.9 × 10−1 2.1× 10−1 2.5× 10−2 8.5× 10−3
−1.5× 10−2

−1.4× 10−2 5.7× 10−2
−39

Table III: Matrix elements of normalized second order moment N̄
(2)
ij (q̄) for different excitations at q̄ = 80 b. Centers

of repulsion qr are mentioned if needed. Letters are used to differentiate same Kπ excitations.

It is worth stressing that perturbations in the overlap matrix due to repulsions, such as the change in amplitude of
a non-diagonal term as depicted in Fig. 8, or the reduction of the diagonal terms (see Fig. 5b), disturbs the values of
the moments, which are the quantities of interest in the present formalism, in a brutal but still continuous way .

IV. STUDY AND DETERMINATION OF Ĵ±1/2(q̄)

In the previous section we have seen that the moments and their derivatives vary rapidly as function of the
deformation. As we will see in the following these quantities occur everywhere in the calculation of Ĵ±1/2(q̄) (with

Ĵ±1/2(q̄) = Ĵ±1/2(q̄)), which seriously complicates the derivation of the inverse of the overlap kernel. This question of
the dependence of the moments on the deformation has been studied in detail in the GOA [1], and in the symmetric-
moment expansion for the one-dimensional case of no intrinsic excitations [32] (although, even in the one-dimensional
case, our solution below is more complete), but in the context of the present study we have not found any information
on this subject in the open literature. In the discussion that follows, we will call [.P ](n) a symmetric operator of order
n despite the fact that, strictly speaking, an order cannot be attributed to such an operator since it contains all orders
up to n.

A. Discussion and generalities about the inversion of the one-dimensional overlap kernel

The difficulty mentioned above already occurs in the standard (one-dimensional) approach and consequently the
discussion is first restricted to this simple case. Let us recall here that when the moments are independent of the
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deformation, the derivation of the operators in question is straightforward. They are given by [23]

Ĵ±1/2(q̄) = [1 + û(q̄)]±1/2 ≃ 1± 1

2
û(q̄)

with

û(q̄) =
N (2)(q̄)

2N (0)(q̄)
P 2.

This form is consistent with an expansion of the kernel overlap up to second order in the collective momentum P .
Besides, we are justified in stopping the expansion of Ĵ−1/2(q̄) at the second order in P since, in the usual derivation
of a Schrödinger equation, one neglects the derivatives of the Hamiltonian kernel of order greater than two. The
situation is quite different here since symmetric operators of order four give contributions to the expansion of the
Hamiltonian kernel involving derivatives less or equal than two. In order to go beyond this approximation, successive
transformations have been performed which allow Ĵ(q̄) to be expressed in a suitable form for our purposes. First the
normalized moment N̄ (2)(q̄) defined above (Section III) is introduced in the definition of û(q̄) which leads to

û(q̄) =
1

√

N (0)(q̄)

1

2

[

N (2)(q̄)P
](2) 1

√

N (0)(q̄)

= −1

2
C(2)(N (2), N (0)) +

1

2

[

N̄ (2)(q̄)P
](2)

.

The derivation of this expression is given in Appendix C. The coefficient C(2) is a function of the first and second
derivatives of the moment of zero order. If the latter were constant, then C(2) would vanish. After inserting this
expression in the definition of Ĵ(q̄) given in equation (10) we obtain

Ĵ(q̄) = 1 + α(0)(q̄) +
1

2

[

N̄ (2)(q̄)P
](2)

with

α(0)(q̄) = −1

2
C(2)(N (2), N (0)).

According to Fig. 11, α(0)(q̄) is not negligible since it can reach 10% at several deformations. It is possible however

to rewrite Ĵ(q̄) in the following form

Ĵ(q̄) =
√

A(0)(q̄)[1 + α(1)(q̄) +
1

2

[

N̄
(2)
R (q̄)P

](2)
]
√

A(0)(q̄)

with











α(1)(q̄) = − 1
2C

(2)(N (2), A(0))
√

A(0)(q̄) =
√

1 + α(0)(q̄)

N̄
(2)
R (q̄) = 1√

A(0)(q̄)
N̄ (2) 1√

A(0)(q̄)

. (29)

Coming back to Fig. 11 we observe that α(1)(q̄) is at most 4% (at q = 30 b) in the whole range of deformation. At
this stage it seems reasonable to neglect this term but it is clear that, if a better approximation is needed, one can
iterate this procedure starting with α(1) which gives the quantity A(1) and so on. If one refers to Eqs. (16) and (19),

one concludes in the light of this study that the entire formalism remains unchanged with a Ĵ(q̄) still given by

Ĵ(q̄) = 1 + û(q̄) = 1 +
1

2

[

N̄ (2)(q̄)P
](2)

, (30)

provided we substitute in all expressions a renormalized zero moment N
(0)
R (q̄) =

∏p−1
i=0

√

A(i)N
(0)(q̄) instead of the

usual moment N (0)(q̄). An index i is used to take into account the number of times the procedure described above
has been iterated. From now on the notation is kept unchanged, with the understanding that in fact a renormalized
zero moment is used.
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Figure 11: Comparison between C(2)(N (2), N (0)) and first iterated C(2)(N̄ (2), 1 + α) values as a function of the
deformation.

Thus we are led to determine Ĵ±1/2(q̄) with Ĵ(q̄) given in Eq. (10). In fact, we are mainly interested in the

determination of Ĵ−1/2(q̄), since it is this operator we need to express the contribution of the Hamiltonian kernel in
Eq. (19). In the one-dimensional case it must be solution of the equation:

Ĵ−1/2(q̄)[1 +
1

2

[

N̄ (2)(q̄)P
](2)

]Ĵ−1/2(q̄) = 1 (31)

As suggested in reference [23], we attempt to solve Eq. (31) with an ansatz of the form

Ĵ−1/2(q̄) = A−1/2(q̄) +
[

B−1/2(q̄)P
](2)

+
[

C−1/2(q̄)P
](4)

(32)

After inserting this ansatz in Eq. (31) we are led to a complicated coupled set of non linear equations between
A−1/2(q̄), B−1/2(q̄), C−1/2(q̄) and their derivatives up to high orders. Solving these equations, including the second

derivative of N (2)(q̄) is not a trivial problem and it would be a considerable amount of work. This is an extensive
study in its own right that goes far beyond the scope of the present paper. In the following we take advantage of
the fact that the size of the problem is reduced considerably if we neglect these second derivatives and consequently
we limit ourselves to finding solutions including only the first derivative of N (2)(q̄). Even in this simple case it is
important to find approximated solutions as a starting point in order to overcome some difficulties in solving Eq. (31).

A natural choice for these approximated solutions is to approach Ĵ±1/2(q̄) by the first terms of their series expansion.

For instance we will define a ĴA,1/2(q̄) as:

ĴA,1/2(q̄) ≡ 1 +
1

2
û(q̄)− 1

8
û2(q̄) ≈ (1 + û(q̄))1/2

where the operator û(q̄) is defined by Eq. (30). By inserting the definition of u(q̄) in ĴA,1/2(q̄) we readily obtain this
operator in the form:

ĴA,1/2(q̄) = A1/2(q̄) +
[

B1/2(q̄)P
](2)

+
[

C1/2(q̄)P
](4)

For the sake of brevity, the derivation of this expression and the coefficients are given in Appendix C2. At this stage
we have thought it interesting to study qualitatively the influence of the derivatives of N̄ (2)(q̄) in this formalism. For

this we check the accuracy the approximation used by calculating ĴA,1/2(q̄)ĴA,1/2(q̄) which we write in the form:

ĴA,1/2(q̄)ĴA,1/2(q̄) = 1 + û(q̄) +R(q̄).

The remainder R(q̄), whose calculation is given in details in the Appendix C3 is in fact an operator

R(q̄) ≃ A(N̄ (2)′′ (q̄)) +
1

2

[

C(N̄ (2), N̄ (2)′ , N̄ (2)′′)N̄ (2)(q̄)P
](2)

(33)
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The symbol ≃ is used to indicate that symmetric operators [.P ](n), n > 2 are neglected in the expression of R(q̄).
This operator, which should be zero if the moments were constant, provides some quantitative information on the
accuracy of our approximation as function of the first and second derivatives of N̄ (2)(q̄). In Fig. 12 we give a plot of
the coefficients A and C over a wide range of deformations between 30 b and 350 b. It is seen that sup

q̄
|A| = 1.9.10−2

and sup
q̄
|C| = 9.8.10−2 over the whole range of deformations considered here, which suggests that this ansatz is a

reasonable zeroth-order approximation, despite the large variations in the moments N̄ (2). On the other hand, the
expressions for the coefficients A and C given in Appendix C tell us that A and C vanish independent if one can
neglect the second derivative of N̄ (2)(q̄). In that case, ĴA,1/2(q̄) becomes an "exact" solution consistent with the
truncation we made in the expansion of the kernel overlap. Notice also that such an approximation takes into account
all the derivatives of N (0)(q̄) up to second order and still includes the first derivative of N̄ (2)(q̄).

0 100 200 300 400
q (b)

-0.1

-0.05

0

0.05

0.1
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C

Figure 12: A and C coefficients in Eq. (33) as function of the deformation.

The same discussion applies to the operator ĴA,−1/2(q̄) which is written in the form

ĴA,−1/2(q̄) = A−1/2(q̄) +
[

B−1/2(q̄)P
](2)

+
[

C−1/2(q̄)P
](4)

,

the coefficients A−1/2(q̄), B−1/2(q̄), C−1/2(q̄) being given in Appendix C2. In particular, if we neglect N̄ (2)′′(q̄) this

operator satisfies ĴA,−1/2(q̄)ĴA,+1/2(q̄) ≃ 1 and more importantly it is also solution of Eq. (31) up to second order.
Inspection of the equations reveals that the coefficient C−1/2(q̄) is not completely defined at this order. A complete
determination of this coefficient is achieved by canceling the contribution of fourth order in Eq. (31). Its value is then
given by

C−1/2(q̄) =
3

32
(N̄ (2)(q̄))2[1− 15

8
ξ(q̄) +

105

64
ξ2(q̄)]

with ξ(q̄) = (N̄ (2)′(q̄))2/N̄ (2)(q̄).
To obtain this expression, the third and fourth derivatives of C−1/2(q̄) are set to zero. It turns out that these conditions

are satisfied by the solution given above since we set to zero the derivatives
(

N̄ (2)(q̄)
)(p)

, p ≥ 2. Thus we conclude

that it is a solution in the whole range of deformations consistent with our assumptions on the derivatives of N̄ (2)(q̄).
To summarize, the operator

Ĵ−1/2(q̄) = 1− 1

4

[

N̄ (2)(q̄)(1− 3

8
(N̄ (2)′(q̄))2)P

](2)

+
3

32

[

(N̄ (2)(q̄))2(1− 15

8
ξ(q̄) +

105

64
ξ2(q̄))P

](4)

is solution of Eq. (31) up to forth order in the symmetric operator [.P ](n). This expansion takes into account not
only the derivatives of N̄ (0)(q̄) up to second order but also the first derivative of N̄ (2)(q̄). Even though it is not
complete, since we do not include the second derivative of N̄ (2)(q̄), this operator represents a significant improvement
over what was generally used in previous works. We now proceed to the N -dimensional case by following step by step
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the procedure described in this section. Consequently, we will also neglect the contribution of the second derivatives
of N̄ (2)(q̄) in the expression of the inverse overlap kernel. One finds a justification for this approximation in the fact
that the general structure of the Schrödinger equation we derive does not depend on the precise determination of the
coefficients entering in the definition of our ansatz for the inverse.

B. Determination of the inverse in the N-dimensional case

A similar analysis to the one-dimensional case can be performed here by considering instead the operator

û(q̄) =
1

√

N (0)(q̄)
(
[

N (1)(q̄)P
](1)

+
1

2

[

N (2)(q̄)P
](2)

)
1

√

N (0)(q̄)
.

First it is written in terms of normalized moments according to the expression

û(q̄) =
[

WN (q̄)P
](1)

+
1

2

[

N (2)(q̄)P
](2)

+ α(0)(q̄),

where we have introduced the quantities:

WN (q̄) = N̄ (1)(q̄) + iC(1)(N (2), N (0))

α(0)(q̄) =
i

2
C(1)(N (1), N (0))− 1

2
C(2)(N (2), N (0)).

The expression of C(1)(N (1), N (0)) is given in Appendix C1. According to the definition of Ĵ(q̄) (Eq. (10)) this
operator becomes

Ĵ(q̄) = I + α(0)(q̄) +
[

WN (q̄)P
](1)

+
1

2

[

N̄ (2)(q̄)P
](2)

.

The difference with the one-dimensional case is the occurrence of an additional first-order symmetric operator and the
fact that all operators are matrices. At this stage we proceed as we did in the one-dimensional case by introducing
renormalized zero-order moments and using an iterative procedure. Let us mention here that our numerical result tell
us that the matrix elements of α(0)(q̄) never exceed 2 × 10−1. Consequently a series expansion with few terms gives

the operator (I + α(0)(q̄))
−1/2 with excellent accuracy. We recall that we keep the same notation N (0)(q̄) to denote

this renormalized moment. With these renormalizations we are finally led to solve Eq. (31) which can be written as

Ĵ−1/2(q̄)[I + û(q̄)]Ĵ−1/2(q̄) = I

û(q̄) =
[

WN (q̄)P
](1)

+
1

2

[

N̄ (2)(q̄)P
](2)

. (34)

One could attempt to solve this equation with an appropriate ansatz which, in the N-dimensional case, should also
include odd-order symmetric operators with an ansatz of the form

Ĵ−1/2(q̄) = A−1/2(q̄) +
[

D−1/2(q̄)P
](1)

+
[

B−1/2(q̄)P
](2)

+
[

E−1/2(q̄)P
](3)

+
[

C−1/2(q̄)P
](4)

. (35)

This expression should be inserted in Eq. (34) but for reasons given in the one-dimensional case, it is advantageous

to start with an approximation to ĴA,−1/2(q̄) chosen as the series expansion of (I + û(q̄))−1/2 up to second order in
û(q̄), i.e. we set

ĴA,−1/2(q̄) = I − 1

2
û(q̄) +

3

8
û2(q̄),

with the operator û(q̄) defined this time by equation (34). It is straightforward to express Ĵ−1/2(q̄) in a form similar
to Eq. (35) and to rewrite Eq. (35) as:

Ĵ−1/2(q̄) = I − 1

2

[

WN (q̄)P
](1)

+
[

(
N̄ (2)(q̄)

2

− 3

16
(N̄ (2)′(q̄))2 − 3

4
(WN (q̄))2

− 3i

16
(WN (q̄)N̄ (2)′(q̄))−)P

](2)

+
[

E−1/2(q̄)P
](3)

+
[

C−1/2(q̄)P
](4)
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with the notation

(X,Y )± = XY ± Y X.

The first derivative of WN (q̄) has been neglected since it is generally very small. The operator defined by the first
three lines of this expression is solution to Eq. (34) up to second order. The coefficients E−1/2(q̄) and C−1/2(q̄) can
then be determined by canceling the third and fourth order contribution in Eq. (34). For practical reasons we neglect
their contributions and derive in the next section a Schrödinger equation with the inverse defined by

Ĵ−1/2(q̄) = I − 1

2

[

WN (q̄)P
](1)

+
[

(
N̄ (2)(q̄)

2

− 3

16
(N̄ (2)′(q̄))2 − 3

4
(WN (q̄))2

− 3i

16
(WN (q̄)N̄ (2)′(q̄))−)P

](2)
. (36)

Otherwise the expression would have contained an exceedingly large number of terms. Again we justify this approxi-
mation by the fact that it does not affect the general structure of the Schrödinger equation that we propose.

V. DERIVATION OF A SCHRÖDINGER-LIKE EQUATION

According to Eq. (19) and taking into account the fact that the inverse operator Ĵ−1/2(q̄) given by Eq. (36) is
Hermitian, the contribution of the Hamiltonian kernel to the Hill-Wheeler equation reduces to the form

Ĵ−1/2(q̄)
1

√

N (0)(q̄)
(H(0)(q̄) +

[

H(1)(q̄)P
](1)

+
1

2

[

H(2)(q̄)P
](2)

)
1

√

N (0)(q̄)
Ĵ−1/2(q̄).

Now, we proceed as we did in the case of the overlap kernel by introducing this time normalized moments of the
Hamiltonian defined by

H̄(n)(q̄) =
1

√

N (0)(q̄)
H(n)(q̄)

1
√

N (0)(q̄)
,

and rewrite the equation given above as function of these moments

Ĵ−1/2(q̄)(H̄
(0)(q̄) +

i

2
C(1)(H̄(1), N̄ (0))

− 1

2
C(2)(H̄(1), N̄ (0)) +

[

(H̄(1)(q̄) +
i

2
C(1)(H̄(2), N̄ (0)))P

](1)

+
1

2

[

H̄(2)(q̄)P
](2)

)Ĵ−1/2(q̄). (37)

The next step is to extract a Schrödinger-like equation following the procedure described in [23]. To this end we
insert the definition from Eq. (36) in Eq. (37) and make an expansion in terms of symmetric ordered product that
we truncate at order two. We illustrate in the following how we achieve this goal by rewriting Eq. (37) in condensed
notation

Ĵ−1/2(q̄)H(q̄)Ĵ−1/2(q̄),

with
{

H(q̄) =
∑2

i=0

[

h(i)(q̄)P
](i)

Ĵ−1/2(q̄) =
∑2

i=0

[

j(i)(q̄)P
](i) (38)

where the quantities j(i)(q̄), h(i)(q̄) are obtained by identification of these operators with those defined in Eq. (36)
and Eq. (37) respectively. With these notations we can rewrite Eq. (37) in the convenient form

2
∑

p,q,r=0

[

j(p)(q̄)P
](p)[

h(q)(q̄)P
](q)[

j(r)(q̄)P
](r)

,
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which has the advantage of showing the typical terms occurring in this formalism. The expansion we are looking for
is then derived very simply by means of general formulas that are given in Appendix A (Eqs. (A3) and (A4)). This
derivation is straightforward, but requires nevertheless quite cumbersome manipulations that we do not describe here.
Thus we limit ourselves to giving here the final expression of a Schrödinger equation which takes into account the
coupling between collective and intrinsic excitations. This equation is written as

(H(q̄)− E) g(q̄) = 0,

H (q̄) = S(q̄) +
[

T (q̄)P
](1)

+
[

U(q̄)P
](2)

(39)

where the quantities S, T , and U are matrices whose expression is

S = h(0) +
1

8
(h

(2)
(0)j(2))+ +

1

16
j
(1)
(2)h

(2)
(0)j

(1)
(2) −

1

4
(h

(1)
(0)j(1))−

− 1

16
j(1)h

(2)
(0)j(1) +

1

32
(j(1)h

(2)
(0)j

(1)
(2))A

T = h(1) +
1

2
(h(0)j(1))+ − 1

2
(h

(1)
(0)j(2))− − 1

16
(j(1)h

(2)
(0)j(2))S

− 1

8
(j(1)h

(1)
(0)j

(1)
(1))S − 1

16
(j(2)h

(2)
(0)j

(1)
(2))A

U = h(2) +
1

2
(h(0)j(2))+ − 1

2
(h

(1)
(2)j

(1)
(2))+ − 1

4
j
(1)
(2)h(0)j

(1)
(2)

− 1

8
j(2)h

(2)
(0)j(2) −

1

8
(j

(1)
(2)h

(1)
(0)j(2))S +

1

2
(h(1)j(1))+

+
1

4
(h(1)j

(1)
(2))− − 1

4
(h

(1)
(2)j(1))− +

1

4
j(1)h(0)j(1)

+
1

8
(j(2)h

(1)
(0)j(1))A − 1

8
(j

(1)
(2)h(0)j(1))A (40)

For the sake of convenience, the dependence in q̄ has been removed in all the quantities in this formula where we use
the compact notation

(XY Z)S = XY Z + ZY X

(XY Z)A = XY Z − ZY X.

Furthermore, the expression for the matrix elements of the moments of H(q̄) suggest that we make the same
assumptions as for the derivatives of the overlap moments. Thus in the derivation of the formulas proposed here it
has been assumed that:















h
(p)
(0)(q̄) = 0 for p ≥ 3

h
(p)
(1)(q̄) = 0 for p ≥ 1

h
(p)
(2)(q̄) = 0 for p ≥ 2

(41)

These assumptions serve to reduce significantly the number of terms in the expressions of the different contributions
S(q̄), T (q̄), U(q̄).

We discuss now some aspects related to the properties and the general structure of the Schrödinger equation defined
by Eq. (39) and Eq. (40) which contains all the necessary ingredients to build it. First, we note that this Hamiltonian
is Hermitian and time-reversal invariant. This is easily demonstrated using the properties of the matrix elements of
the moments listed in Section III C 3. As a consequence, if we treat collective and intrinsic excitations on the same
footing, there is no dissipation but only a reversible exchange of energy between these two kinds of excitation. Notice
in particular that a linear term as it occurs in Eq. (39) does not induce a dissipative force as introduced in studies
of fission using a macroscopic-microscopic approach [19]. However, It may be that for practical reasons we need to
treat explicitly a reduced set of intrinsic excitations and take into account the remainder implicitly because they
are too numerous and their spectrum too dense. In that case we may be led to introduce a dissipation mechanism.
We do not consider for the moment applications at high excitation energies where such situations would occur [33].
Concerning the general structure of the Schrödinger Eq. (39), we analyze separately the three different terms which
are present in its definition. In Eq. (40) we have arranged the terms in such a way that even moments come first
and odd ones at the end in S(q̄) and U(q̄). We recall that odd moments occur only in the multi-dimensional case.
Accordingly in evaluating S(q̄) and U(q̄) in the one-dimensional case we must consider only the first three terms in



21

S(q̄) and the first six in U(q̄). Their expressions are readily obtained with the formulas given previously but they
are very long and for the sake of brevity we do not give them here. Notice that if we neglect the derivatives of the
overlap moments we recover, as we should, the simple Hamiltonian given in reference [23]. In the multi-dimensional
case all the terms in Eq. (40) must be retained. They involve products of matrices of the moments of the overlap and
Hamiltonian kernels, and their derivatives. Each of them can be interpreted as effective vertices inducing transitions
between excitations. At this point it is important to note that these vertices, by the definition of the moments, are
the result of an average over a wide range of deformations around q̄ and consequently the coupling between collective
and intrinsic degrees of freedom is very non-local in the present work. This contrasts with the other approach [34]
which couples the nuclear collective dynamics to internal excitations defined at every deformation along the adiabatic
fission path. To conclude this analysis it is appropriate to recast our Hamiltonian Eq. (39) in a familiar form. With
more conventional notations, first we express its diagonal matrix elements which leads to the expression

Hii(q̄) =
1

2

[

(
1

M(q̄)
)iiP

](2)
+ Vii(q̄),

We have taken into account the fact that the matrix T is zero along the diagonal and identified a collective potential
as: V (q̄) = S(q̄). Also we have defined the mass as: M−1(q̄) = 1

2U(q̄). We recognize standard Hamiltonians which
describe separately the collective dynamics on each potential energy surfaces built with the various 2-qp excitations
considered. In the same manner we introduce the coupling between 2-qp surfaces by considering the non-diagonal
matrix elements of Eq. (39). They are written in the form

Hij(q̄) =
1

2

[

(

1

M(q̄)

)

ij

P
](2)

+
[

Tij(q̄)P
](1)

+ Vij(q̄),

with the definition of a non-diagonal mass as:
(

1
M(q̄)

)

ij
= 1

2Uij(q̄).

This form of the interaction term is interesting because it separates the coupling between collective and intrinsic
degrees of freedoms into terms of different nature. The first two, which depend on the collective momentum, can be
interpreted as a dynamical coupling while the last contribution is a potential coupling. In appearance the Hamiltonian
derived here has a general structure very similar to the classical Hamiltonian given by the authors in Ref. [34] .
However their derivation and ours rely on very different approaches. In particular the one presented here is based on
a quantum description from the start, while the classical Hamiltonian in Ref. [34] needs to be quantized after the
fact.

For completeness, we could have included in our discussion the explicit calculation of the moments associated with
neutron- and proton-number operators, in order to use the method [25] which incorporates the conservation of the
average particle number in the GCM formalism. Similarly, we could have included the moments of the operator
associated with the subtraction of the center-of-mass energy of the nucleus. These contributions are straightforward
to calculate, but are omitted here in order to avoid further complicating the expression for the Hamiltonian above.

VI. CONCLUSION

In this paper we have presented a theoretical framework, the Schrödinger Collective Intrinsic Model (SCIM),
which allows in a microscopic way the simultaneous coupling of single-particle and collective degrees of freedom.
Such an approach is based on a generalized GCM, where the general GCM ansatz of the nuclear wave function is
extended by a few excited configurations. In fact, one considers as generating wave functions not only HFB ground-
state configurations with different values for the collective generator coordinate but also 2-qp excited states. Such an
approach has the advantage of describing in a completely quantum-mechanical fashion, and without phenomenological
parameters, the coupling of qp degrees of freedom to the collective motion of the nucleons. Our derivation of the
SCIM proceeds in two steps. The first step is based on the generalization of the symmetric moment expansion of the
equations derived in the framework of the GCM including the coupling between collective and intrinsic variables. The
moments occurring in the equations are matrices whose dimensions depends on the number of excitations introduced
in the description. Contrary to the usual case – without qp excitations – all moments, odd and even, must be included
in the summation. Such an exact expansion in terms of local operators of the generalized Hill-Wheeler equation is then
transformed into a local Schrödinger equation by inverting the expansion of the overlap kernel. Then a second-order
differential Schrödinger equation is derived by limiting the summation to second order terms under the assumption
that the series expansion of the overlap and Hamiltonian kernels converge rapidly. The derivation of the inverse of the
overlap has been seriously complicated by the fact that the moments and their derivatives vary rapidly as function
of the deformation, as observed in the numerical study of the overlap kernel in a wide range of deformations in 236U.
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A quantitative information on the accuracy of our approximation as function of the first and second derivatives of
second-order moment of the overlap has been given in the present paper for the scalar case. The Schrödinger equation
is finally written in a convenient form that has the advantage of exhibiting typical terms occurring in the formalism
such as, for instance, the potential coupling, and the dynamical coupling between intrinsic and collective excitations.
There are a number of avenues that could be pursued now with this new formalism. Among them, the study of the
fission dynamics and the coupling between intrinsic and collective excitations in the descent from saddle to scission
represents one of the most challenging problems in many-body theory. Also, a particularly interesting use for this new
approach is in those nuclei which exhibit excitation spectra showing collective as well as non-collective effects. This
would surely improve the energies of the 0+2 states, which is one of the problems of collective models today. In all these
studies, the microscopic nuclear wave function will be analyzed to determine the influence of the different degrees of
freedom on nuclear properties. This would of course add to the computational burden, but the ingredients to perform
the calculation are ready for the most part. The derivation and calculation of energy kernels will be presented in
detail in a separate publication.
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Appendix A: SYMMETRIC ORDERED PRODUCT OF OPERATORS

The symmetric ordered product of operators (SOPO) is defined by [23] (p.421):

[

A(q + s/2, q − s/2)P
](n)

=

1

2n

n
∑

q=0

Cq
nP

n−qA(q + s/2, q − s/2)P q (A1)

where A is any operator and P is the derivative operator P = i ∂
∂q̄ . For instance, the first three SOPO are:

[

AP
](0)

= A

[

AP
](1)

=
1

2
(AP + PA)

[

AP
](2)

=
1

4
(AP 2 + 2PAP + P 2A)

where the action of PA on a vector g(q) is:

PAg(q) = A(1)g(q) +APg(q) (A2)

with A(n) defined as A(n) = (PnA) = (i)n ∂nA
∂qn . Let us note that for a Hermitian operator A, A(n) is Hermitian or

anti-Hermitian according to the parity of n:

(

A(n)
)+

= (1)nA(n)

For any operators A, B, and C, which depend on the collective variable q, we have the following properties:
- The symmetric ordered product is linear:

[

AP
](n)

+
[

BP
](n)

=
[

(A+B)P
](n)
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- The symmetric ordered product preserves the hermiticity:

A+ = A ⇒
(

[

AP
](n)

)+

=
[

AP
](n)

{

A+ = A

B+ = B
⇒

(

[

AP
](n)[

BP
](q)
)+

=
[

BP
](q)[

AP
](n)

- More generally, the product of two and three SOPO can be expanded as a linear combination of symmetric ordered
product. This property is used throughout the paper in the derivation of various expressions.

We give these expansions in a form convenient for retrieving the contribution of a SOPO of a given order

[

AP
](n)[

BP
](q)

=

n+q
∑

i=0

1

2i

min(n,i)
∑

s=max(0,i−q)

Cs
nC

i−s
q (−1)i−s

[

A(i−s)B(s)P
](n+q−i)

(A3)

[

AP
](n)[

BP
](q)[

CP
](r)

=

n+q+r
∑

p=0

(−1)p

2p

min(p,q+r)
∑

i=0

min(p−i,n)
∑

t=max(0,p−q−r)

Ct
nC

p−i−t
q+r−i(−1)t

[

A(p−i−t)F (B,C, r, i, t)P
](n+q+r−p)

(A4)

with

F (B,C, r, i, t) =

min(i,q)
∑

s=max(0,i−r)

(−1)sCs
qC

i−s
r

(

B(i−s)C(s)
)(t)

.

In particular, using (A4) with n = 0, q = 1, r = 0 we find:

A
[

BP
](1)

C =
[

ABCP
](1)

+
1

2

(

ABC(1) −A(1)BC
)

(A5)

A
[

BP
](2)

C =
[

ABCP
](2)

+
[

(ABC(1) −A(1)BC)P
](1)

+
1

4

(

A(2)BC − 2A(1)BC(1) +ABC(2)
)

Formulas (A5) and (A4) are the formulas used to develop the formalism in terms of normalized moments. In fact
after setting

A = C =
1√
N (0)

we obtain

1√
N (0)

[

BP
](1) 1√

N (0)
=
[

B̄P
](1)

+
i

2
C(1)(B,N (0))

1√
N (0)

[

BP
](2) 1√

N (0)
=
[

B̄P
](2)

+ iC(1)(B,N (0))

− C(2)(B,N (0)) (A6)

with the definitions

C(1)(A,N (0)) =
1√
N (0)

A

(

1√
N (0)

)′
−
(

1√
N (0)

)′
A

1√
N (0)

C(2)(A,N (0)) =
1

4

[

(

1√
N (0)

)′′
A

1√
N (0)

+ 2

(

1√
N (0)

)′
A

(

1√
N (0)

)′

+
1√
N (0)

A

(

1√
N (0)

)′′
]
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Appendix B: OVERLAP KERNEL

The matrix elements of the overlap kernel are expressed as Nij(q, q
′) = 〈Φi(q)|Φj(q

′)〉, where |Φi(q)〉 is defined by
Eq. (22).

The calculation of the overlap kernel between two HFB states at different deformations is detailed in [26]. The
generalization to 2-qp excitations is straightforward.

Let us introduce the quantities "S, T and Y " of [26]

Sij =
〈Φ(q)|a+q′

j aq
′

i |Φ(q′)〉
〈Φ(q)|Φ(q′)〉 ,

Tij =
〈Φ(q)|a+q′

i a+q′

j |Φ(q′)〉
〈Φ(q)|Φ(q′)〉 ,

Yij =
〈Φ(q)|aq

′

i a
q′

j |Φ(q′)〉
〈Φ(q)|Φ(q′)〉 (B1)

where the particle operators {aqi , a+q
i } are related to the qp operators {ηqi , η+q

i } through the BCS transformation:
{

ηqi = uq
ia

q
i − vqi a

+q
ī

η+q
ī

= uq
i a

+q
ī

+ vqi a
q
i

(B2)

For i, j, k, l > 0, and ī, j̄, k̄, l̄ their time reversed states, we have:

〈Φ(q)|η+q′

i η+q′

j̄
|Φ(q′)〉 = 〈Φ(q)|Φ(q′)〉

[

uq′

i u
q′

j Tij̄ + uq′

i v
q′

j Sji

− vq
′

i uq′

j (δij − Sij) + vq
′

i vq
′

j Yjī

)

],

〈Φ(q)|ηq
l̄
ηqk|Φ(q′)〉 = 〈Φ(q)|Φ(q′)〉

∑

pp′

τqq
′

lp τqq
′

kp′

[

uq
l u

q
kYp̄p′

− uq
l v

q
k(δpp′ − Spp′) + vql u

q
kSp′p − vql v

q
kTpp̄′

]

(B3)

where the transformation τqq
′

ij is defined through the relation

a+q′

j =
∑

i

τqq
′

ij a+q
i (B4)

The different quantities in Eq. (B3) can be expressed as [26]:

〈Φ(q)|Φ(q′)〉 = det(τqq
′

)det(Z)

δij − Sij = (τqq
′−1uqZ

′−1uq′)ij

Tij̄ = (uqZ−1vqτqq
′

)ji

Yij̄ = −(τqq
′−1uqZ

′−1vq
′

)ij (B5)

with Z = uq(τ+)−1uq′ + vqτvq
′

and Z ′ = uq′(τ)−1uq + vq
′

τ+vq.

Appendix C: Calculation of I + û(q) and related quantities in terms of normalized moments

1. Calculation of I + û(q)

According to Eq.(16), the operator I + û(q) is

I + û(q) = I +
1

√

N (0)(q)
(
[

N (1)(q)P
](1)

+
1

2

[

N (2)(q)P
](2)

)
1

√

N (0)(q)
(C1)
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By use of Eqs. (A5) and (A6), û(q) can be expressed, after straightforward calculations, as

û(q) = C+
N (q) +

[

WN (q)P
](1)

+
1

2

[

N̄ (2)(q)P
](2)

(C2)

with

WN (q) = N̄ (1)(q) + iC(1)(N (2), N (0))

C+
N (q) =

i

2
C(1)(N (1), N (0))− 1

2
C(2)(N (2), N (0))

and

C(1)(A,N (0)) =
1

√

N (0)(q)
A

(

1
√

N (0)(q)

)′

−
(

1
√

N (0)(q)

)′

A
1

√

N (0)(q)

C(2)(A,N (0)) =
1

4

[(

1
√

N (0)(q)

)′′

A
1

√

N (0)(q)

+ 2

(

1
√

N (0)(q)

)′

A

(

1
√

N (0)(q)

)′

+
1

√

N (0)(q)
A

(

1
√

N (0)(q)

)′′]

It is worth noticing that in the scalar case, the coefficient C(1)(A,N (0)) and N̄ (1)(q) are zero so that the operator
u reduces to

û(q) = −1

2
C(2)(N (2), N (0)) +

1

2

[

N̄ (2)(q)P
](2)

2. Calculation of the operators (I + û(q̄))1/2 and (I + û(q̄))−1/2

For sake of simplicity, we restrict our discussion to the standard –one dimensional– case. Ĵ1/2(q̄) the square root of

the operator 1 + û(q̄) is approximated by the first terms of the series expansion up to the order û2(q̄):

Ĵ1/2(q̄) = (I + û(q̄))1/2 = 1 +
1

2
û(q̄)− 1

8
û2(q̄) (C3)

with

û(q̄) =
1

2

[

N̄ (2)(q̄)P
](2)

Using the property (A.1), (û(q̄))2 is

û2(q̄) =
1

4

[ 1

16

(

N̄ (2)′′(q̄)
)2

+
1

2

[

(

N̄ (2)′′(q̄)N̄ (2)(q̄)

− 2(N̄ (2)′(q̄))2
)

P
](2)

+
[

(N̄ (2)(q̄))2P
](4)
]

and the operator Ĵ1/2(q̄) can be expressed in terms of SOPO as:

Ĵ1/2(q̄) = A1/2(q̄) +
[

B1/2(q̄)P
](2)

+
[

C1/2(q̄)P
](4)

(C4)
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with


























A1/2(q̄) = 1− 1
29

(

N̄ (2)′′(q̄)
)2

B1/2(q̄) =
1
4

(

1 + 1
16N̄

(2)′′(q̄)− 1
8

(

N̄(2)′ (q̄)
)2

N̄(2)(q̄)

)

N̄ (2)(q̄)

C1/2(q̄) = − 1
32

(

N̄ (2)(q̄)
)2

(C5)

The same derivation applies for Ĵ−1/2(q̄) the inverse of the root square of 1 + û(q̄), which can be expressed as:

Ĵ−1/2(q̄) ≡ 1− 1

2
û(q̄) +

3

8
û2(q̄) ≈ (I + û(q̄))−1/2

= A−1/2(q̄) +
[

B−1/2(q̄)P
](2)

+
[

C−1/2(q̄)P
](4)

with


























A−1/2(q̄) = 1− 3
29

(

N̄ (2)′′(q̄)
)2

B−1/2(q̄) = − 1
4

(

1 + 1
16N̄

(2)′′(q̄)− 3
8

(

N̄(2)′ (q̄)
)2

N̄(2)(q̄)

)

N̄ (2)(q̄)

C−1/2(q̄) =
3
32

(

N̄ (2)(q̄)
)2

(C6)

3. Validity of the approximation used to calculate the operator (I + û(q̄))1/2:

The validity of the truncation made on the expansion of the square root of the overlap kernel Ĵ1/2(q̄), Eq. (C3),

is checked here, by estimating the extent to which the relation (I + û(q̄))1/2(I + û(q̄))1/2 = (I + û(q̄)) is satisfied. In
other words, using the expression of (I + û(q̄))1/2 given in Eq. (C3), the residual R(q̄) is defined by the relation

(I + û(q̄))1/2(I + û(q̄))1/2 = (I + û(q̄)) +R(q̄)

with

R(q̄) = −1

8
(û(q̄))3 +

1

64
(û(q̄))4

Consistently with the truncations made in section II, the residual R(q̄) is restricted to its lower orders in its develop-
ment in symmetric ordered products. Thus R(q̄) is

R(q̄) = A(q̄) +
1

2

[

C(q̄)N̄ (2)(q̄)P
](2)

Neglecting the derivatives
(

N̄ (2)(q̄)
)(p)

for p > 2, after tedious but straightforward calculations using Eqs. (A3) and
(A4), the coefficients A(q̄) and C(q̄) are

A(q̄) =
−3

211

(

N̄ (2)′′(q̄)
)3

+
73

218

(

N̄ (2)′′(q̄)
)4

C(q̄) =
−1

29






9
(

N̄ (2)′′(q̄)
)2

+ 32
N̄ (2)′′(q̄)

(

N̄ (2)′(q̄)
)2

N̄ (2)(q̄)







+
5

213






34

(

N̄ (2)′′(q̄)
)2 (

N̄ (2)′(q̄)
)2

N̄ (2)(q̄)
+
(

N̄ (2)′′(q̄)
)3







The smaller the residual R(q̄), and by extension A(q̄) and C(q̄), the best the approximation. In particular, we find

A(q̄) = C(q̄) = 0 for N̄ (2)′′(q̄) = 0. Similar conclusions are found for Ĵ−1/2(q̄).
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